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Ben Hutchings
● Working on Linux kernel and related code 

for Debian and in paid jobs for over 10 
years

● Debian kernel and LTS team member, 
doing a lot of the kernel packaging and 
backporting work

● Formerly maintained Linux long-term 
stable branches needed by Debian



  

Linux releases early and often

● Some will need changes elsewhere to be useful:
● New user-space tool to configure it
● New version of existing user-space tool
● Applications and libraries using new API
● Packaging or infrastructure changes

● I'll talk about new features since Linux 5.10 (bullseye)

● Linux has feature releases about 5 times a 
year, plus stable updates every week or two

● Some features aren't really ready in the first 
kernel release



  

Recap of previous years' features (1)

Added support for:
● Virtualisation with KVM
● General performance monitoring events
● Tracing: {k,u}probes, ftrace
● kexec
● Transparent hugepages
● VMAP_STACK



  

Recap of previous years' features (2)

● Added support for more operations
● Each process’s I/O executes in threads belonging to the 

process
● Improved performance (no need to change context)
● Reduces risk of using the wrong context
● Made some more things work (e.g. /proc/self access)

● Integrated with the audit subsystem and LSMs
● More users in Debian: MariaDB, plocate, QEMU, Samba

io_uring



  

Recap of previous years' features (3)

● Added features:
● BTF in modules
● Atomic operations
● Timer callbacks
● Bloom filters
● CO-RE in kernel
● Many new helper functions and hooks

● Disabled by default for users without CAP_SYS_ADMIN or CAP_BPF



  

seccomp bitmap optimisation [5.11]

● seccomp system call used to limit the 
system calls a task can use in future

● Used for sandboxing by systemd, 
bubblewrap, Docker, etc.

● Filters written in classic BPF, so flexible but 
slow

● Kernel now works out which system calls are 
always allowed and skips BPF execution for 
them

● Result: most sandboxed processes got faster



  

Landlock [5.13]
● A new Linux Security Module
● Inspired by FreeBSD’s Capsicum and 

OpenBSD’s pledge/unveil APIs
● Similar to seccomp, allows any process to 

restrict itself and its children
● Unlike seccomp, rules defined in terms of 

operations and paths
● Currently only controls filesystem operations



  

idmapped mounts [5.12]

● Containers with different user namespaces could not share a rootfs, so 
container managers had to copy and chown files

● Solution: idmapped mounts, adding an additional mapping between 
global and on-disk ids

● Supported by most popular block-based filesystems, and overlayfs
● Used by systemd for “portable” services and home directories
● WIP to use this in containerd

● User namespaces remap uids and gids 
within a container, e.g. container uid 0 
maps to global uid 1000

● Filesystems store global uids and gids



  

PREEMPT_DYNAMIC [5.12]

● Desktops and servers typically want different preemption mode, and we 
compromise on the middle option

● Preemption mode can now be overridden with kernel parameter
● Currently only on x86; could be enabled elsewhere
● Not including RT preemption

● Should installer set the preemption mode e.g. based on whether you 
install a desktop?

● Kernel config includes when to allow preemption in 
system calls—never, at specific points, or whenever 
it’s safe

● This is a trade-off between throughput and latency



  

Core scheduling [5.14] (1)

● Resource sharing creates high bandwidth side-channels
● Not a new problem, but speculative execution attacks have 

made it worse
● Resource sharing also causes unpredictable performance—bad 

for RT

● SMT allows scheduling multiple 
concurrent threads on the same 
core, improving utilisation of CPU 
execution resources



  

Core scheduling [5.14] (2)

● Core scheduling allows user-space to define which threads can and 
can’t share a core

● containerd, lxc provide options to isolate containers with core scheduling
● QEMU/libvirt doesn’t yet seem to support isolating VMs 

● Kernel should not let threads from 
different security contexts share a core

● Kernel should not schedule additional 
threads together with an RT thread



  

Real-Time Linux (PREEMPT_RT) [ongoing]
● PREEMPT_RT patch set adds the option for 

Linux to do real-time scheduling
● Useful for industrial and safety-critical 

applications, but also media production
● Developed since ~2005 by some upstream 

developers, but only small parts went 
upstream

● For 5.10: ~16,000 lines changed
● For 5.18: <4,000 lines changed, mostly small 

fixes for RT-incompatible driver code



  

Real-Time Linux tracing [5.14,5.17]
● osnoise and timerlat tracers added to support 

measurement of latency in real-time 
configurations

● rtla tool, included with kernel source, is a 
front-end to the tracers

● Will be shipped in a new binary package in 
the next 5.19 upload



  

ksmbd [5.15]

● New kernel-based SMB file server
● Higher performance than Samba, but 

without integration into Active Directory
● Managed with ksmbd-tools, already 

in Debian



  

Filesystem health reporting [5.16]

● fanotify has a new option to enable 
reporting of data corruption or I/O 
failures in the filesystem

● Needs filesystem support, currently 
limited to ext4

● User-space doesn’t seem to be using 
it yet—should UDisks or systemd be 
doing this?



  

Memory folios [5.16-ongoing]
● Kernel memory manager mostly deals with pages as 

defined by hardware MMU
● Pages can be grouped and managed as “compound 

pages”, but page and compound page pointers are 
same C type

● Kernel has lots of checks for whether a page is part of 
compound page, and bugs where wrong assumption 
was made

● Folio API introduces a distinct type for compound pages
● Should avoid this sort of bug and remove the need for a 

lot of run-time checks



  

Write throttling rework [5.16]
● Block device writes are normally buffered in 

memory and written back later, but memory usage 
needs to be limited

● When a device can’t write data as fast as it’s 
being buffered (congestion), kernel makes writing 
tasks wait until congestion is cleared, or a timeout

● Not all drivers signalled congestion cleared, and 
block layer rewrite broke that completely, so tasks 
waited until timeout

● This is fixed in Linux 5.16, but it’s a complete 
reimplementation that won’t be backported 



  

Random number generator
● Uses more conventional cryptography to combine 

entropy sources and to generate bits
● Should have higher performance, despite Intel RNG 

instructions getting slower
● Uses boot loader or UEFI as entropy source by default
● Uses CPU RNG as entropy source by default
● All above changes backported to stable!
● On most platforms, even /dev/urandom provides 

secure random bits immediately
● On arm64, uses hardware RNGs available through 

system firmware or special registers



  

Security hardening (1)
● [arm64,s390x,x86] Kernel stack randomisation 

mitigates attacks that involve reuse of stack 
buffers between system calls

● Built-in by default but needs a kernel 
parameter to enable

● Stricter run-time bounds checking for 
mem{cpy,move,set} calls—overrunning array 
inside struct is now caught

● [armel,armhf,riscv64] VMAP_STACK prevents 
kernel stack overflow

● Was already available and enabled on 
amd64, arm64, s390x



  

Security hardening (2)
● Control Flow Integrity (CFI) makes it harder to 

exploit bugs with ROP/JOP
● [arm64] Software implementation; requires 

Clang
● [x86] Limited hardware implementation 

(IBT); requires recent Intel CPU 
● Neither enabled yet



  

Packaging changes

● MIPS configurations more consistent, and all MIPS architectures have a generic 
flavour

● linux-perf no longer matched to kernel version
● Implemented CI on Salsa:

● Fixed all blhc warnings and lintian errors (but not all warnings)
● Added a ‘quick’ build profile that should catch most regressions despite slow CI 

runners

● Added support for various SoCs/platforms:
● [arm64] Microsoft Hyper-V; Qualcomm SDA845
● [armhf] Marvell MMP{2,3}
● [riscv64] Microchip Polarfire; StarFive JH7100
● [x86] Intel Alder Lake, Emmitsburg, Jasper Lake, Lakefield



  

Questions?



  

Credits & License (1)
● Content by Ben Hutchings

www.decadent.org.uk/ben/talks/
License: GPL-2+

● Original OpenOffice.org template by Raphaël Hertzog
raphaelhertzog.com/go/ooo-template
License: GPL-2+

● Background based on “Serenity” theme by Edward Padilla
wiki.debian.org/DebianArt/Themes/serenity
License: GPL-2

● Hard drive image by Raimond Spekking
commons.wikimedia.org/wiki/File:Toshiba_MK1403MAV_-_broken_glass
_platter-93375.jpg
License: CC BY-SA 4.0

https://www.decadent.org.uk/ben/talks/
http://raphaelhertzog.com/go/ooo-template
https://wiki.debian.org/DebianArt/Themes/serenity
https://commons.wikimedia.org/wiki/File:Toshiba_MK1403MAV_-_broken_glass_platter-93375.jpg
https://commons.wikimedia.org/wiki/File:Toshiba_MK1403MAV_-_broken_glass_platter-93375.jpg


  

Credits & License (2)
● Give Way sign by Roulex_45

commons.wikimedia.org/wiki/File:Give-Way-sign.svg
License: CC BY-SA 3.0

● Stopwatch image by Jerry
www.flickr.com/photos/43437461@N00/4112797721
License: CC BY 2.0

● Folio image by Jessie Chapman
commons.wikimedia.org/wiki/File:William_Shakespeare%27s_first_folio.JP
G
CC BY-SA 4.0

● Traffic lights image by Old Photo Profile
www.flickr.com/photos/10361931@N06/4747872021
CC BY 2.0

https://commons.wikimedia.org/wiki/File:Give-Way-sign.svg
https://www.flickr.com/photos/43437461@N00/4112797721
https://commons.wikimedia.org/wiki/File:William_Shakespeare%27s_first_folio.JPG
https://commons.wikimedia.org/wiki/File:William_Shakespeare%27s_first_folio.JPG
https://www.flickr.com/photos/10361931@N06/4747872021
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