

What's new in the Linux kernel
and what's missing in Debian

Ben Hutchings · DebConf 22

Ben Hutchings
● Working on Linux kernel and related code

for Debian and in paid jobs for over 10
years

● Debian kernel and LTS team member,
doing a lot of the kernel packaging and
backporting work

● Formerly maintained Linux long-term
stable branches needed by Debian

Linux releases early and often

● Some will need changes elsewhere to be useful:
● New user-space tool to configure it
● New version of existing user-space tool
● Applications and libraries using new API
● Packaging or infrastructure changes

● I'll talk about new features since Linux 5.10 (bullseye)

● Linux has feature releases about 5 times a
year, plus stable updates every week or two

● Some features aren't really ready in the first
kernel release

Recap of previous years' features (1)

Added support for:
● Virtualisation with KVM
● General performance monitoring events
● Tracing: {k,u}probes, ftrace
● kexec
● Transparent hugepages
● VMAP_STACK

Recap of previous years' features (2)

● Added support for more operations
● Each process’s I/O executes in threads belonging to the

process
● Improved performance (no need to change context)
● Reduces risk of using the wrong context
● Made some more things work (e.g. /proc/self access)

● Integrated with the audit subsystem and LSMs
● More users in Debian: MariaDB, plocate, QEMU, Samba

io_uring

Recap of previous years' features (3)

● Added features:
● BTF in modules
● Atomic operations
● Timer callbacks
● Bloom filters
● CO-RE in kernel
● Many new helper functions and hooks

● Disabled by default for users without CAP_SYS_ADMIN or CAP_BPF

seccomp bitmap optimisation [5.11]

● seccomp system call used to limit the
system calls a task can use in future

● Used for sandboxing by systemd,
bubblewrap, Docker, etc.

● Filters written in classic BPF, so flexible but
slow

● Kernel now works out which system calls are
always allowed and skips BPF execution for
them

● Result: most sandboxed processes got faster

Landlock [5.13]
● A new Linux Security Module
● Inspired by FreeBSD’s Capsicum and

OpenBSD’s pledge/unveil APIs
● Similar to seccomp, allows any process to

restrict itself and its children
● Unlike seccomp, rules defined in terms of

operations and paths
● Currently only controls filesystem operations

idmapped mounts [5.12]

● Containers with different user namespaces could not share a rootfs, so
container managers had to copy and chown files

● Solution: idmapped mounts, adding an additional mapping between
global and on-disk ids

● Supported by most popular block-based filesystems, and overlayfs
● Used by systemd for “portable” services and home directories
● WIP to use this in containerd

● User namespaces remap uids and gids
within a container, e.g. container uid 0
maps to global uid 1000

● Filesystems store global uids and gids

PREEMPT_DYNAMIC [5.12]

● Desktops and servers typically want different preemption mode, and we
compromise on the middle option

● Preemption mode can now be overridden with kernel parameter
● Currently only on x86; could be enabled elsewhere
● Not including RT preemption

● Should installer set the preemption mode e.g. based on whether you
install a desktop?

● Kernel config includes when to allow preemption in
system calls—never, at specific points, or whenever
it’s safe

● This is a trade-off between throughput and latency

Core scheduling [5.14] (1)

● Resource sharing creates high bandwidth side-channels
● Not a new problem, but speculative execution attacks have

made it worse
● Resource sharing also causes unpredictable performance—bad

for RT

● SMT allows scheduling multiple
concurrent threads on the same
core, improving utilisation of CPU
execution resources

Core scheduling [5.14] (2)

● Core scheduling allows user-space to define which threads can and
can’t share a core

● containerd, lxc provide options to isolate containers with core scheduling
● QEMU/libvirt doesn’t yet seem to support isolating VMs

● Kernel should not let threads from
different security contexts share a core

● Kernel should not schedule additional
threads together with an RT thread

Real-Time Linux (PREEMPT_RT) [ongoing]
● PREEMPT_RT patch set adds the option for

Linux to do real-time scheduling
● Useful for industrial and safety-critical

applications, but also media production
● Developed since ~2005 by some upstream

developers, but only small parts went
upstream

● For 5.10: ~16,000 lines changed
● For 5.18: <4,000 lines changed, mostly small

fixes for RT-incompatible driver code

Real-Time Linux tracing [5.14,5.17]
● osnoise and timerlat tracers added to support

measurement of latency in real-time
configurations

● rtla tool, included with kernel source, is a
front-end to the tracers

● Will be shipped in a new binary package in
the next 5.19 upload

ksmbd [5.15]

● New kernel-based SMB file server
● Higher performance than Samba, but

without integration into Active Directory
● Managed with ksmbd-tools, already

in Debian

Filesystem health reporting [5.16]

● fanotify has a new option to enable
reporting of data corruption or I/O
failures in the filesystem

● Needs filesystem support, currently
limited to ext4

● User-space doesn’t seem to be using
it yet—should UDisks or systemd be
doing this?

Memory folios [5.16-ongoing]
● Kernel memory manager mostly deals with pages as

defined by hardware MMU
● Pages can be grouped and managed as “compound

pages”, but page and compound page pointers are
same C type

● Kernel has lots of checks for whether a page is part of
compound page, and bugs where wrong assumption
was made

● Folio API introduces a distinct type for compound pages
● Should avoid this sort of bug and remove the need for a

lot of run-time checks

Write throttling rework [5.16]
● Block device writes are normally buffered in

memory and written back later, but memory usage
needs to be limited

● When a device can’t write data as fast as it’s
being buffered (congestion), kernel makes writing
tasks wait until congestion is cleared, or a timeout

● Not all drivers signalled congestion cleared, and
block layer rewrite broke that completely, so tasks
waited until timeout

● This is fixed in Linux 5.16, but it’s a complete
reimplementation that won’t be backported

Random number generator
● Uses more conventional cryptography to combine

entropy sources and to generate bits
● Should have higher performance, despite Intel RNG

instructions getting slower
● Uses boot loader or UEFI as entropy source by default
● Uses CPU RNG as entropy source by default
● All above changes backported to stable!
● On most platforms, even /dev/urandom provides

secure random bits immediately
● On arm64, uses hardware RNGs available through

system firmware or special registers

Security hardening (1)
● [arm64,s390x,x86] Kernel stack randomisation

mitigates attacks that involve reuse of stack
buffers between system calls

● Built-in by default but needs a kernel
parameter to enable

● Stricter run-time bounds checking for
mem{cpy,move,set} calls—overrunning array
inside struct is now caught

● [armel,armhf,riscv64] VMAP_STACK prevents
kernel stack overflow

● Was already available and enabled on
amd64, arm64, s390x

Security hardening (2)
● Control Flow Integrity (CFI) makes it harder to

exploit bugs with ROP/JOP
● [arm64] Software implementation; requires

Clang
● [x86] Limited hardware implementation

(IBT); requires recent Intel CPU
● Neither enabled yet

Packaging changes

● MIPS configurations more consistent, and all MIPS architectures have a generic
flavour

● linux-perf no longer matched to kernel version
● Implemented CI on Salsa:

● Fixed all blhc warnings and lintian errors (but not all warnings)
● Added a ‘quick’ build profile that should catch most regressions despite slow CI

runners

● Added support for various SoCs/platforms:
● [arm64] Microsoft Hyper-V; Qualcomm SDA845
● [armhf] Marvell MMP{2,3}
● [riscv64] Microchip Polarfire; StarFive JH7100
● [x86] Intel Alder Lake, Emmitsburg, Jasper Lake, Lakefield

Questions?

Credits & License (1)
● Content by Ben Hutchings

www.decadent.org.uk/ben/talks/
License: GPL-2+

● Original OpenOffice.org template by Raphaël Hertzog
raphaelhertzog.com/go/ooo-template
License: GPL-2+

● Background based on “Serenity” theme by Edward Padilla
wiki.debian.org/DebianArt/Themes/serenity
License: GPL-2

● Hard drive image by Raimond Spekking
commons.wikimedia.org/wiki/File:Toshiba_MK1403MAV_-_broken_glass
_platter-93375.jpg
License: CC BY-SA 4.0

https://www.decadent.org.uk/ben/talks/
http://raphaelhertzog.com/go/ooo-template
https://wiki.debian.org/DebianArt/Themes/serenity
https://commons.wikimedia.org/wiki/File:Toshiba_MK1403MAV_-_broken_glass_platter-93375.jpg
https://commons.wikimedia.org/wiki/File:Toshiba_MK1403MAV_-_broken_glass_platter-93375.jpg

Credits & License (2)
● Give Way sign by Roulex_45

commons.wikimedia.org/wiki/File:Give-Way-sign.svg
License: CC BY-SA 3.0

● Stopwatch image by Jerry
www.flickr.com/photos/43437461@N00/4112797721
License: CC BY 2.0

● Folio image by Jessie Chapman
commons.wikimedia.org/wiki/File:William_Shakespeare%27s_first_folio.JP
G
CC BY-SA 4.0

● Traffic lights image by Old Photo Profile
www.flickr.com/photos/10361931@N06/4747872021
CC BY 2.0

https://commons.wikimedia.org/wiki/File:Give-Way-sign.svg
https://www.flickr.com/photos/43437461@N00/4112797721
https://commons.wikimedia.org/wiki/File:William_Shakespeare%27s_first_folio.JPG
https://commons.wikimedia.org/wiki/File:William_Shakespeare%27s_first_folio.JPG
https://www.flickr.com/photos/10361931@N06/4747872021

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

