
Debian’s support for
Secure Boot on x86 and ARM

Ben Hutchings
Kernel Recipes, Paris, 2016

Ben Hutchings
● Regular Linux contributor since 2008
● Working on various drivers and kernel code

in my day job
● Debian kernel and LTS team member, now

doing most of the kernel maintenance aside
from ports

● Maintaining Linux 3.2.y and 3.16.y stable
update series on kernel.org

● Kernel maintainer for LF Civil Infrastructure
Platform, aiming for super-long-term support

Secure Boot
● Optional feature in UEFI - uses certificate store to

validate boot loader, UEFI drivers, system firmware
updates

● Protects against persistent malware (bootkit / kernel
rootkit) if implemented correctly

● Required in 'Designed for Windows' systems since
Windows 8 (2012)

● Only common trusted certificates on PCs are for
Microsoft signing keys
● MS will sign PC boot loaders for a small fee, and the

certificate store is normally editable on PCs
● ARM-based Windows systems are completely locked down

● HPe shipping ARM64 server systems in SB setup
mode, allowing installer to set trusted certificates

GNU/Linux under Secure Boot

● First stage needs MS signature – manual
submission process
● Most distributions introduced 'shim' as first stage

boot loader that won't need updating often
● MS expects boot loader and kernel to validate

code they load – and it's a good idea anyway
● For later stages, we control certificates and keys

– certificates can be embedded in 'shim'
● GRUB needs to validate its modules and kernels
● Linux kernel needs to validate its modules and

any other code that runs in kernel mode

Securing the Linux kernel
● Root user, including malware running as root, can

modify kernel without using any security bugs
● MS signing requires kernel to validate code it runs –

and it's also a good idea in general
● Using Matthew Garrett's patchset to add 'securelevel'

feature, activated when booted under SB:
● Module signatures are mandatory
● kexec_load() is disabled – must use kexec_file_load()

instead
● Hibernation is disabled – but images could be signed and

validated using per-machine key
● Other kernel APIs that allow peek/poke are disabled

● Force-loading of modules into the wrong kernel
version is disabled

The signature problem

● We don't want to expose signing keys to buildds
● Reproducible builds can't depend on anything

secret
● So we can't auto-build signed binaries in single step

Solution requires an extra source package:
1. Build unsigned binaries from first source package
2. Sign 'offline' and put detached signatures in second

source package
3. Build signed binaries from second source package

● The second source package for linux
● Contains detached signatures for specific

kernel version and script to update them for a
new kernel version

● linux builds binary packages like
linux-image-4.7.0-1-amd64-unsigned

● linux-signed clones those packages, attaches
signatures, and builds packages like
linux-image-4.7.0-1-amd64

● Signing currently done with my personal key,
which will not be trusted by shim or GRUB

Introducing linux-signed

Signing in dak - background
● Debian archive software (dak) signs archive

metadata using keys trusted by Debian systems
● Separate keys for stable releases, security updates,

rolling releases
● Keys managed by 'FTP' team

● We want dak to also sign code from linux, grub,
etc. and publish detached signatures
● Keys also managed by FTP team, possibly similar split

between releases
● Mustn't publish complete binaries at this stage - need

reproducibility, and might have an embargoed fix
● dak supports uploads with non-standard file types

(byhand) and configured handlers (auto-byhand!)

Signing in dak - implementation
● Add auto-byhand script that converts tarball of

EFI binaries and/or kernel modules to tarball
of corresponding signatures

● Enable auto-byhand for all source packages
that need code signing

● Include signature tarballs in signed archive
metadata

● Change each first source package to include a
suitable tarball in uploaded files (dpkg-
distaddfile)

● Add preparation script to each second source
package to download and unpack published
signature tarball

Didn't Ubuntu already do this?
Yes, but:
● Launchpad has a different hook mechanism
● Signing script only covers EFI binaries, not

kernel modules
● Signing script produces signed binaries, not

detached signatures
● Kernel is only signed on amd64
● linux packages in Debian and Ubuntu have

>10 years of divergence
We'll still share shim, grub-signed, sbsigntool,
etc.

Secure Boot on ARM?
● Upstream kernel has EFI stub for ARM32 and

ARM64
● We have out-of-tree kernel patches for

securelevel on ARM64
● sbsigntool works for ARM32 and ARM64

(although the test cases only cover x86)
● GRUB EFI code runs on ARM32 and ARM64
● shim runs on ARM64
● So we should be able to support Secure Boot

on ARM64

Securing the signing keys
● Julien Cristau is working on signing with a

PKCS#11 hardware security module – some
model of Yubikey

● Signing with Yubikey is slow so we plan to
use it for EFI binaries only; kernel modules
will be signed with a separate key file

Current status
● Bug #820036 tracks work to be done

● dak support for signed packages – in progress
● shim package – in review
● GRUB signed build and validation of next stage
● Linux signed build – ready to go when dak is
● fwupdate signed build
● Signed binaries in installer and live images

● More information at
https://wiki.debian.org/SecureBoot

● Aiming for stretch release (freeze in Jan
2017)

https://bugs.debian.org/820036
https://wiki.debian.org/SecureBoot
https://bugs.debian.org/820036
https://wiki.debian.org/SecureBoot

Credits
● Linux 'Tux' logo © Larry Ewing, Simon Budig.

● Modified by Ben to add Debian open-ND logo
● Debian open-ND logo © Software in the

Public Interest, Inc.
● Debian slide template © Raphaël Hertzog
● Background image © Alexis Younes

Debian’s support for
Secure Boot on x86 and ARM

Ben Hutchings
Kernel Recipes, Paris, 2016

Ben Hutchings
● Regular Linux contributor since 2008
● Working on various drivers and kernel code

in my day job
● Debian kernel and LTS team member, now

doing most of the kernel maintenance aside
from ports

● Maintaining Linux 3.2.y and 3.16.y stable
update series on kernel.org

● Kernel maintainer for LF Civil Infrastructure
Platform, aiming for super-long-term support

Secure Boot
● Optional feature in UEFI - uses certificate store to

validate boot loader, UEFI drivers, system firmware
updates

● Protects against persistent malware (bootkit / kernel
rootkit) if implemented correctly

● Required in 'Designed for Windows' systems since
Windows 8 (2012)

● Only common trusted certificates on PCs are for
Microsoft signing keys
● MS will sign PC boot loaders for a small fee, and the

certificate store is normally editable on PCs
● ARM-based Windows systems are completely locked down

● HPe shipping ARM64 server systems in SB setup
mode, allowing installer to set trusted certificates

GNU/Linux under Secure Boot

● First stage needs MS signature – manual
submission process
● Most distributions introduced 'shim' as first stage

boot loader that won't need updating often
● MS expects boot loader and kernel to validate

code they load – and it's a good idea anyway
● For later stages, we control certificates and keys

– certificates can be embedded in 'shim'
● GRUB needs to validate its modules and kernels
● Linux kernel needs to validate its modules and

any other code that runs in kernel mode

Securing the Linux kernel
● Root user, including malware running as root, can

modify kernel without using any security bugs
● MS signing requires kernel to validate code it runs –

and it's also a good idea in general
● Using Matthew Garrett's patchset to add 'securelevel'

feature, activated when booted under SB:
● Module signatures are mandatory
● kexec_load() is disabled – must use kexec_file_load()

instead
● Hibernation is disabled – but images could be signed and

validated using per-machine key
● Other kernel APIs that allow peek/poke are disabled

● Force-loading of modules into the wrong kernel
version is disabled

The signature problem

● We don't want to expose signing keys to buildds
● Reproducible builds can't depend on anything

secret
● So we can't auto-build signed binaries in single step

Solution requires an extra source package:
1. Build unsigned binaries from first source package
2. Sign 'offline' and put detached signatures in second

source package
3. Build signed binaries from second source package

● The second source package for linux
● Contains detached signatures for specific

kernel version and script to update them for a
new kernel version

● linux builds binary packages like
linux-image-4.7.0-1-amd64-unsigned

● linux-signed clones those packages, attaches
signatures, and builds packages like
linux-image-4.7.0-1-amd64

● Signing currently done with my personal key,
which will not be trusted by shim or GRUB

Introducing linux-signed

Signing in dak - background
● Debian archive software (dak) signs archive

metadata using keys trusted by Debian systems
● Separate keys for stable releases, security updates,

rolling releases
● Keys managed by 'FTP' team

● We want dak to also sign code from linux, grub,
etc. and publish detached signatures
● Keys also managed by FTP team, possibly similar split

between releases
● Mustn't publish complete binaries at this stage - need

reproducibility, and might have an embargoed fix
● dak supports uploads with non-standard file types

(byhand) and configured handlers (auto-byhand!)

Signing in dak - implementation
● Add auto-byhand script that converts tarball of

EFI binaries and/or kernel modules to tarball
of corresponding signatures

● Enable auto-byhand for all source packages
that need code signing

● Include signature tarballs in signed archive
metadata

● Change each first source package to include a
suitable tarball in uploaded files (dpkg-
distaddfile)

● Add preparation script to each second source
package to download and unpack published
signature tarball

Didn't Ubuntu already do this?
Yes, but:
● Launchpad has a different hook mechanism
● Signing script only covers EFI binaries, not

kernel modules
● Signing script produces signed binaries, not

detached signatures
● Kernel is only signed on amd64
● linux packages in Debian and Ubuntu have

>10 years of divergence
We'll still share shim, grub-signed, sbsigntool,
etc.

Secure Boot on ARM?
● Upstream kernel has EFI stub for ARM32 and

ARM64
● We have out-of-tree kernel patches for

securelevel on ARM64
● sbsigntool works for ARM32 and ARM64

(although the test cases only cover x86)
● GRUB EFI code runs on ARM32 and ARM64
● shim runs on ARM64
● So we should be able to support Secure Boot

on ARM64

Securing the signing keys
● Julien Cristau is working on signing with a

PKCS#11 hardware security module – some
model of Yubikey

● Signing with Yubikey is slow so we plan to
use it for EFI binaries only; kernel modules
will be signed with a separate key file

Current status
● Bug #820036 tracks work to be done

● dak support for signed packages – in progress
● shim package – in review
● GRUB signed build and validation of next stage
● Linux signed build – ready to go when dak is
● fwupdate signed build
● Signed binaries in installer and live images

● More information at
https://wiki.debian.org/SecureBoot

● Aiming for stretch release (freeze in Jan
2017)

Credits
● Linux 'Tux' logo © Larry Ewing, Simon Budig.

● Modified by Ben to add Debian open-ND logo
● Debian open-ND logo © Software in the

Public Interest, Inc.
● Debian slide template © Raphaël Hertzog
● Background image © Alexis Younes

Linux 'Tux' logo © Larry Ewing, Simon Budig.

Redistribution is free but has to include this notice.
Modified by Ben to add Debian open-ND logo.

Debian open-ND logo © Software in the Public Interest, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions
of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

OpenOffice.org template by Raphaël Hertzog
http://raphaelhertzog.com/go/ooo-template
License: GPL-2+

Background image by Alexis Younes “ayo”
http://www.73lab.com/
License: GPL-2+

'Access denied' image by Mike Licht
http://NotionsCapital.com
License: CC-BY-2.0 - https://creativecommons.org/licenses/by/2.0/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

