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Secure Boot
● Optional feature in UEFI - uses certificate store to 

validate boot loader, UEFI drivers, system firmware 
updates

● Protects against persistent malware (bootkit / kernel 
rootkit) if implemented correctly

● Required in 'Designed for Windows' systems since 
Windows 8 (2012)

● Only common trusted certificates on PCs are for 
Microsoft signing keys
● MS will sign PC boot loaders for a small fee, and the 

certificate store is normally editable on PCs
● ARM-based Windows systems are completely locked down

● HPe shipping ARM64 server systems in SB setup 
mode, allowing installer to set trusted certificates



GNU/Linux under Secure Boot

● First stage needs MS signature – manual 
submission process
● Most distributions introduced 'shim' as first stage 

boot loader that won't need updating often
● MS expects boot loader and kernel to validate 

code they load – and it's a good idea anyway
● For later stages, we control certificates and keys 

– certificates can be embedded in 'shim'
● GRUB needs to validate its modules and kernels
● Linux kernel needs to validate its modules and 

any other code that runs in kernel mode



Securing the Linux kernel
● Root user, including malware running as root, can 

modify kernel without using any security bugs
● MS signing requires kernel to validate code it runs – 

and it's also a good idea in general
● Using Matthew Garrett's patchset to add 'securelevel' 

feature, activated when booted under SB:
● Module signatures are mandatory
● kexec_load() is disabled – must use kexec_file_load() 

instead
● Hibernation is disabled – but images could be signed and 

validated using per-machine key
● Other kernel APIs that allow peek/poke are disabled

● Force-loading of modules into the wrong kernel 
version is disabled



The signature problem

● We don't want to expose signing keys to buildds
● Reproducible builds can't depend on anything 

secret
● So we can't auto-build signed binaries in single step

Solution requires an extra source package:
1. Build unsigned binaries from first source package
2. Sign 'offline' and put detached signatures in second 

source package
3. Build signed binaries from second source package



● The second source package for linux
● Contains detached signatures for specific 

kernel version and script to update them for a 
new kernel version

● linux builds binary packages like
linux-image-4.7.0-1-amd64-unsigned

● linux-signed clones those packages, attaches 
signatures, and builds packages like
linux-image-4.7.0-1-amd64

● Signing currently done with my personal key, 
which will not be trusted by shim or GRUB

Introducing linux-signed



Signing in dak - background
● Debian archive software (dak) signs archive 

metadata using keys trusted by Debian systems
● Separate keys for stable releases, security updates, 

rolling releases
● Keys managed by 'FTP' team

● We want dak to also sign code from linux, grub, 
etc. and publish detached signatures
● Keys also managed by FTP team, possibly similar split 

between releases
● Mustn't publish complete binaries at this stage - need 

reproducibility, and might have an embargoed fix
● dak supports uploads with non-standard file types 

(byhand) and configured handlers (auto-byhand!)



Signing in dak - implementation
● Add auto-byhand script that converts tarball of 

EFI binaries and/or kernel modules to tarball 
of corresponding signatures

● Enable auto-byhand for all source packages 
that need code signing

● Include signature tarballs in signed archive 
metadata

● Change each first source package to include a 
suitable tarball in uploaded files (dpkg-
distaddfile)

● Add preparation script to each second source 
package to download and unpack published 
signature tarball



Didn't Ubuntu already do this?
Yes, but:
● Launchpad has a different hook mechanism
● Signing script only covers EFI binaries, not 

kernel modules
● Signing script produces signed binaries, not 

detached signatures
● Kernel is only signed on amd64
● linux packages in Debian and Ubuntu have 

>10 years of divergence
We'll still share shim, grub-signed, sbsigntool, 
etc.



Secure Boot on ARM?
● Upstream kernel has EFI stub for ARM32 and 

ARM64
● We have out-of-tree kernel patches for 

securelevel on ARM64
● sbsigntool works for ARM32 and ARM64 

(although the test cases only cover x86)
● GRUB EFI code runs on ARM32 and ARM64
● shim runs on ARM64
● So we should be able to support Secure Boot 

on ARM64



Securing the signing keys
● Julien Cristau is working on signing with a 

PKCS#11 hardware security module – some 
model of Yubikey

● Signing with Yubikey is slow so we plan to 
use it for EFI binaries only; kernel modules 
will be signed with a separate key file



Current status
● Bug #820036 tracks work to be done

● dak support for signed packages – in progress 
● shim package – in review
● GRUB signed build and validation of next stage
● Linux signed build – ready to go when dak is
● fwupdate signed build
● Signed binaries in installer and live images

● More information at 
https://wiki.debian.org/SecureBoot

● Aiming for stretch release (freeze in Jan 
2017)

https://bugs.debian.org/820036
https://wiki.debian.org/SecureBoot
https://bugs.debian.org/820036
https://wiki.debian.org/SecureBoot
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